Механизмы передачи вращательного движения - ремонт промышленного оборудования. Преобразование вращательного движения Механизм для движения вперед назад


Короткий путь http://bibt.ru <<Предыдущая страница Оглавление книги Следующая страница>>

Механизмы для преобразования вращательного движения в прямолинейное или возвратно-поступательное.

Для преобразования вращательного движения в прямолинейное или возвратно-поступательное в станках применяют кривошипные, кулисные, кулачковые, гидравлические и пневматические механизмы.

Кривошипные механизмы состоят из кривошипного диска с цапфой и шарнирно соединенного с ним шатуна. Ход ползуна, приводимого шатуном, изменяют путем перестановки цапфы кривошипа на диске в радиальном направлении.

Рис. 125.

Кулисный механизм состоит из кривошипного диска 1, кулисы 2 (рис. 125), качающейся вокруг оси 3. Другой конец кулисы связан с ползушкой 4. При вращении кривошипного диска палец 5, входящий в кулисный камень 6, заставляет кулису качаться вокруг оси 3.

Кулисный камень скользит при этом в прорези кулисы. При изменении радиуса R кривошипа путем перестановки его пальца в радиальной прорези диска изменяется ход ползушки 4.

Кулачковые механизмы разделяются на цилиндрические и дисковые. Первые состоят из цилиндра с копирным пазом или выступом, по которому при вращении цилиндра скользит палец с роликом, связанный с ползуном. Вторые представляют собой профилированные кулачки, в периферическую поверхность которых упираются пальцы с роликами. Эти пальцы связаны с ползунами, которым придают возвратно-поступательное движение при вращении кулачков.

В гидравлических приводах перемещение поршня, передаваемое ползуну, осуществляется при нагнетании масла шестеренчатым или лопастным насосом поочередно в полости цилиндра, расположенные по обе стороны поршня.

Изменение длины хода ползуна производится перестановкой упоров, воздействующих на рычаг. Последний изменяет положение золотника, который перекрывает и открывает поочередно окна каналов ввода и выпуска масла из цилиндра.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Механизмы для преобразования движения

Механическая энергия многих машин-двигателей обычно представляет собой энергию вращательного вала. Однако не во всех станках и механизмах рабочие органы также совершают вращательное движение. Зачастую им необходимо сообщить поступательное или возвратно-поступательное движения. Возможна и обратная картина. В подобных случаях применяют механизмы, преобразующие движение. К ним относятся: зубчато-реечный, винтовой, кривошипно-шатунный, кулисный и кулачковый механизмы.

1 .1 Зубчато-реечный механизм

Зубчато-реечный механизм состоит из зубчатого цилиндрического колеса и зубчатой рейки - планки с нарезанными на ней зубьями. Такой механизм можно использовать для различных целей: вращая зубчатое колесо на неподвижной оси, перемещать поступательно рейку (например, в реечном домкрате, в механизме подачи сверлильного станка); обкатывая колесо по неподвижной рейке, перемещать ось колеса относительно рейки (например, при осуществлении продольной подачи суппорта в токарном станке).

1 .2 Винтовой механизм

Для преобразования вращательного движения в поступательное очень часто применяется механизм, основными частями которого являются винт и гайка. Такой механизм применяют в различных конструкциях:

гайка (внутренняя резьба нарезана в корпусе) неподвижна, винт вращается и одновременно поступательно перемещается;

гайка неподвижна, винт вращается и одновременно поступательно перемещается с салазками. Салазки шарнирно соединены с винтом и могут совершать возвратно-поступательное движение в зависимости от направления движения винта по направляющим;

винт закреплен так, что может лишь вращаться, а гайка (в данном случае салазки) лишена возможности вращаться, так как ее нижняя (или другая) часть установлена между направляющими. В этом случае гайка (салазки) будет перемещаться поступательно.

В перечисленных винтовых механизмах применяются резьбы. различного профиля, чаще всего прямоугольная и трапецевидная (к примеру в слесарных тисках, домкратах и т. п.). Если угол подъема винтовой линии небольшой, то ведущим движением является вращательное. При очень большом угле подъема винтовой линии возможно преобразование поступательного движения во вращательное и тому примером может служить быстродействующая отвертка.

1 .3 Кривошипный механизм

Крипошип - звено кривошипного механизма, которое может совершать полный оборот вокруг неподвижной оси. Кривошип (I) имеет цилиндрический выступ - шип 1 , ось которого смещена относительно оси вращения кривошипа на расстояние г, которое может быть постоянным или регулируемым. Более сложным вращающимся звеном кривошипного механизма является коленчатый вал. Эксцентрик (III) - диск, насаженный на вал с эксцентриситетом, то есть со смещением оси диска относительно оси вала. Эксцентрик можно рассматривать как конструктивную разновидность кривошипа с малым радиусом.

Кривошипный механизм - механизм, преобразующий один вид движения в другой. Например, равномерно вращательное - в поступательное, качательное, неравномерное вращательное и т. д. Вращающееся звено кривошипного механизма, выполненное в виде кривошипа или коленчатого вала, связано со стойкой и другим звеном вращательными кинематическими парами (шарнирами). Принято различать подобные механизмы на кривошипно-шатунные, кривошипно-коромысловые, кривошипно-кулисные и др. в зависимости от характера движения и наименования того звена, в паре с которым работает кривошип.

Используются кривошипные механизмы в поршневых двигателях, насосах, компрессорах, прессах, в приводе движения металлорежущих станках и других машинах.

Кривошипно-шатунный механизм - один из самых распространенных механизмов преобразования движения. Его применяют как для преобразования вращательного движения в возвратно-поступательное (например, поршневые насосы), так и для преобразования возвратно-поступательного во вращательное (например, двигатели внутреннего сгорания).

Шатун - деталь кривошипно-шатунного (ползунного) механизма, передающая движение поршня или ползуна на кривошип коленчатого вала. Часть шатуна, служащая для присоединения к коленчатому валу, называется кривошипной головкой, а противоположная часть - поршневой (или ползунной) головкой.

Механизм состоит из стойки 1 ,кривошипа2, шатуна 3 и ползуна 4. Кривошип совершает непрерывное вращение, ползун - возвратно-поступательное движение, а: шатун - сложное, плоско-параллельное движение.

Полный ход ползуна получается равным удвоенной длине кривошипа. Рассматривая перемещения ползуна из одного положения в другое, нетрудно увидеть, что при повороте кривошипа на равные углы ползун проходит разное расстояние: при движении от крайнего положения к среднему участки пути ползуна увеличиваются, а при движении от среднего положения к крайнему - уменьшаются. Это свидетельствует о том, что при равномерном движении кривошипа ползун движется неравномерно. Так скорость движения ползуна меняется от нуля в начале его движения и достигает наибольшей величины, когда кривошип и шатун образуют между собой прямой угол, затем снова уменьшается до нуля при другом крайнем положении.

Неравномерность хода ползуна вызывает появление сил инерции, оказывающих отрицательное влияние на весь механизм. В этом главный недостаток кривошипно-ползунного механизма.

В некоторых кривошипно-шатунных механизмах возникает необходимость в обеспечении прямолинейности движения поршневого штока 4 . Для этого между кривошипом 1, шатуном 2 и ползуном 5 используют так называемый крейцкопф 3, воспринимающий на себя качательные движения шатуна (4 - шток промежуточный).

Эксцентриковый механизм. Подобно кривошипно-ползунному работает эксцентриковый механизм, в котором роль кривошипа выполняет эксцентрик, укрепленный на ведущем валу. Цилиндрическая поверхность экс - центрика 2 свободно охватывается хомутом 1 и бугелем 3, к которому прикреплен шатун 4, передающий во время вращения ведущего вала поступательное движение ползуну 5. В отличие от кривошипно-ползунного эксцентриковый механизм не может преобразовывать возвратно-поступательное движение ползуна во вращательное движение эксцентрика вследствие того, что между хомутом и эксцентриком, несмотря на наличие смазки, остается достаточное трение, чтобы препятствовать движению.

По этой причине эксцентриковый механизм применяют только в тех машинах, где необходимо вращательное движение преобразовывать в возвратно-поступательное движение и создавать небольшой ход исполнительному органу при значительных силах. К таким машинам относятся штампы, прессы и др.

Кривошипно-коромысловый механизм. Коромысло - звено рычажного механизма и представляет собой деталь в виде двуплечевого рычага, качающегося около средней неподвижной оси на стойке. Кривошип 1 может совершать вращательное движение. Кинематическая цепочка: криво шип 1, шатун 2 и коромысло 3, связанная шарнирными сочленениями, заставляет коромысло совершать качательные движения вокруг неподвижной оси на стойке.

Применяют кривошипно-коромысловый механизм в рессорных подвесках паровозов, вагонов, в конструкциях машин для испытания материалов, весов, буровых станков и др.

1 .4 Кулисный механизм

Кулиса 1 - звено (деталь) кулисного механизма, снабженное прямолинейной или дугообразной прорезью, в которой перемещается небольшой ползун - кулисный камень 2 . Кулисный механизм - рычажный механизм, преобразующий вращательное или карательное движения в возвратно-поступательное и наоборот. По виду движения различают кулисы: вращающиеся, качающиеся и прямолинейно движущиеся (3 - отверстие, через которое вставляется и удаляется кулисный камень).

Кривошипно-кулисный механизм. На рис. 38, I показано, что вокруг неподвижной оси вращается кривошип 3, шарнирно соединенный одним концом с ползуном (кулисным камнем) 2. При этом ползун начинает скользить (перемещаться) в продольном прямолинейном пазу, прорезанном в рычаге (кулисе) 1, и поворачивать его вокруг неподвижной оси. Длина кривошипа позволяет придать кулисе вращательное движение. Подобные механизмы служат для преобразования равномерного вращательного движения кривошипа в неравномерное вращательное движение кулисы, но если при этом длина кривошипа равна расстоянию между осями опор кривошипа и кулисы, то получается кривошипно-шатунный механизм с равномерно вращающейся кулисой.

Кривошипно-кулисный механизм с качающейся кулисой (рис. 38, II) служит для преобразования вращательного движения кривошипа 3 в качательное движение кулисы 1 и при этом происходит быстрый ход при движении ползуна в одну сторону и медленный - в другую. Механизм широко применяется в металлорежущих станках, например: в поперечно-строгальных, зубодолбежных и др.

Кривошипно-кулисный механизм с поступательно движущейся кулисой (рис. 38, III) служит для преобразования вращательного движения кривошипа 3 в прямолинейно-поступательное движение кулисы 1. В механизме кулиса может быть расположена вертикально или наклонно. Применяется такой механизм для малых длин хода и находит широкое применение в счетных машинах (синусный механизм)

1 .5 Кулачковый механизм

Кулачок - деталь кулачкового механизма с профилированной поверхностью скольжения, чтобы при своем вращательном движении передавать сопряженной детали (толкателю или штанге) движение с заданным законом изменения скорости. Геометрическая форма кулачков может быть различной: плоской, цилиндрической, конической, сферической и болеесложной.

Кулачковые механизмы - преобразующие механизмы, изменяющие характер движения, В машиностроении широко распространены кулачковые механизмы, преобразующие вращательное движение в возвратно-поступательное и возвратно-качательное. Кулачковые механизмы (рис. 39 и 40), как и другие виды механизмов, подразделяют на плоские и пространственные.

Кулачковые механизмы применяют для выполнения различных операций в системах управления рабочим циклом технологических машин, станков, двигателей и т. д. Основным элементом системы газораспределения двигателя внутреннего сгорания является простейший кулачковый механизм. Механизм состоит из кулачка 1, штанги 2, связанной с рабочим органом, и стойки, поддерживающей в пространстве звенья механизма и обеспечивающей каждому звену соответствующие степени свободы. Ролик 3, устанавливаемый в некоторых случаях на конце штанги, не влияет на закон движения звеньев механизма. Штанга, совершающая поступательное движение, называется толкателем 2, & вращательное - коромыслом 4 . При непрерывном движении кулачка толкатель совершает прерывное поступательное, а коромысло - прерывное вращательное движения.

Обязательным условием нормальной работы кулачкового механизма является постоянное касание штанги и кулачка (замыкание механизма). Замыкание механизма может быть силовым и геометрическим. В первом случае замыкание обычно обеспечивается пружиной 5 , прижимающей штангу к кулачку, во втором - конструктивным оформлением толкателя, особенно, его рабочей поверхности. К примеру, толкатель с плоской поверхностью касается кулачка разными точками, потому его применяют только в случае передачи малых усилий.

В машинах легкой промышленности для обеспечения весьма сложного взаимосвязанного движения деталей,

В машинах легкой промышленности для обеспечения весьма сложного взаимосвязанного движения деталей, наряду с простейшими плоскими, применяют пространственные кулачковые механизмы. В пространственном кулачковом механизме можно увидеть типичный пример геометрического замыкания - цилиндрический кулачок с профилем в виде паза, в который входит ролик толкателя.

При выборе типа кулачкового механизма стараются остановиться на применении плоских механизмов, имеющих значительно меньшую стоимость по сравнению с пространственными, и во всех случаях, когда это возможно, используют штангу качающейся конструкции, так как штангу (коромысло) удобно устанавливать на опоре с применением подшипников качения. Кроме того, в этом случае габаритные размеры кулачка и всего механизма в целом могут быть меньше.

Изготовление кулачковых механизмов с коническими и сферическими кулачками является сложным техническим и технологическим процессом, а потому и дорогим. Поэтому такие кулачки применяют в сложных и точных приборах.

Подобные документы

    Основные характеристики, способ действия и виды механизмов преобразования вращательного движения в поступательное или наоборот: винтовой, зубчато-реечный, кулачковый, кривошипно-шатунный, кулисный, эксцентриковый, храповой, мальтийский и планетарный.

    презентация , добавлен 28.12.2010

    Конструкция винтового механизма, используемого для преобразования вращательного движения в поступательное. Кинематические закономерности в зубчато-реечном механизме. Принципы работы кулачкового, кривошипно-шатунного, кулисного и храпового механизмов.

    презентация , добавлен 09.02.2012

    Применение шарнирно-рычажных механизмов, классификация звеньев по виду движения. Кулачковые механизмы: принцип действия, наименование звеньев. Многозвенные механические передачи. Трение в винтовой паре, цапфах и пятах. Расчет подшипников качения.

    контрольная работа , добавлен 25.02.2011

    Виды движений, их основные характеристики и передаточные механизмы. Вращательное движение в машинах. Разновидности передач, особенности устройства, специфика работы и сфера применения в технике. Достоинства и недостатки механизмов, их назначение.

    реферат , добавлен 10.11.2010

    Шарнирно-рычажные механизмы применяются для преобразования вращательного или поступательного движения в любое движение с требуемыми параметрами. Фрикционные - для изменения скорости вращательного движения или преобразования вращательного в поступательное.

    реферат , добавлен 15.12.2008

    Назначение и классификация батанных механизмов: кривошипные и с кулачковым приводом. Технологические и технические требования к механизмам. Схема батанного механизма челночного ткацкого станка. График направления движения батана, ускорения и сил инерции.

    контрольная работа , добавлен 20.08.2014

    Изучение и анализ деятельности предприятия легкой промышленности - швейной фабрики "Бердчанка". Функции, состав и оборудование экспериментального цеха, особенности подготовительного производства. Организация работы раскройного и швейного цехов фабрики.

    отчет по практике , добавлен 22.03.2011

    Общие сведения о грузоподъемных и транспортирующих машинах, их классификация. Подъемные механизмы и домкраты, подъемники и грузоподъемные краны, манипуляторы, грузозахватные устройства, механизмы подъема и передвижения, ленточные и цепные конвейеры.

    диссертация , добавлен 19.09.2010

    Комплекс, производящий товары народного потребления. Общая характеристика легкой промышленности в России. Особенности планирования подготовки производства предприятий легкой промышленности. Сырьевая база, структура производственных мощностей и ресурсы.

    контрольная работа , добавлен 27.04.2009

    Аналог ускорений толкателя. Зубчатый и кулачковый механизмы, механизм с роликовым толкателем. Проектирование профиля кулачка. Кинетостатическое исследование плоского механизма. Расчет маховика. Определение моментов сил сопротивления. Построение графиков.

Плоский шарнирный механизм - это система, составленная из твердых звеньев, соединенных между собой подвижными шарнирами , которые позволяют звеньям поворачиваться друг относительно друга в одной плоскости. Разнообразные шарнирные механизмы повсеместно используются в технике.

Обычно их цель - преобразовать движение одних звеньев в требуемое движение других звеньев. В простейшем и, пожалуй, самом важном случае нужно преобразовать вращательное движение в возвратно-поступательное, а лучше - в прямолинейное. С такой задачей столкнулся Джеймс Ватт, работая над усовершенствованием своей паровой машины. Ему совсем прямолинейное движение не требовалось, и он нашел подходящее для себя решение. Но вопрос о том, как получить из вращательного движения строго прямолинейное, остался, и на поиск ответа ушло еще около ста лет. Вам же предлагается решить эту задачу за несколько дней.

Итак, нужно придумать шарнирный механизм из нескольких звеньев - такой, что если двигать конец какого-то одного звена по окружности, то конец другого звена будет двигаться по прямой. Ограничивать свободу движения звеньев любым другим способом, кроме шарнирных соединений, нельзя (например, нельзя использовать направляющие).

Подсказка

Неожиданным образом эта механическая задача оказывается тесно связанной с геометрией. Дело в том, что инверсия относительно данной окружности Ω с центром О переводит любую окружность, которая проходит через точку О , в прямую (разные окружности переходят в разные прямые).

Напомним, что инверсия относительно данной окружности Ω с центром О - это преобразование плоскости, при котором точке А , отличной от О , ставится в соответствие такая точка А" на луче ОА , что выполнено равенство ОА ·ОА" = R 2 , где R - радиус окружности Ω. Из этого определения сразу видно, например, что инверсия оставляет точки окружности Ω на месте. Упомянутое выше свойство менее очевидно, но при решении задачи им можно пользоваться.

Осталось создать систему из нескольких звеньев с шарнирными соединениями, в которой бы конец одного звена был инверсным образом конца другого звена. Тогда ровно по этому свойству получим, что круговое движение одной точки перейдет в прямолинейное движение другой точки.

Решение

Рассмотрим систему, показанную на рисунке 1. Она состоит из шести звеньев, два из которых имеют одну длину (ОА и ОС ), а четыре - другую (на рисунке звенья одной длины покрашены одним цветом). В такой системе точки В и D являются инверсными образами друг друга относительно некоторой окружности с центром в точке О . Покажем это.

Для начала заметим, что точки О , В и D лежат на одной прямой. В самом деле, из рисунка видно, что треугольники ОАС , ВАС и DAC - равнобедренные с общим основанием АС . Поэтому их вершины О , В и D лежат на одной и той же прямой - срединном перпендикуляре к АС .

Теперь покажем, что значение произведения ОВ·OD не зависит от положения точек в системе, а зависит только от длин звеньев. А поскольку эти длины не меняются, то это означает, что и произведение не меняется, - ровно то, что нам нужно по определению инверсии (см. подсказку).

В ромбе ABCD проведем диагонали (рис. 2). Пусть Р - точка их пересечения. Как известно, диагонали ромба перпендикулярны и делятся точкой пересечения пополам, - это нам сейчас пригодится. Обозначим x = BP = PD . Тогда

ОВ·OD = (ОР ВР )·(ОР + PD ) = (ОР x )·(ОР + x ) = OP 2 − x 2 .

По теореме Пифагора для треугольника ОРА : ОР 2 = ОА 2 − АР 2 , а для треугольника ВАР : АР 2 + х 2 = АР 2 + ВР 2 = АВ 2 .

Используя последние два равенства, получаем, что

ОВ·OD = OP 2 − x 2 = ОА 2 − АР 2 − x 2 = ОА 2 − (АР 2 + x 2) = ОА 2 − АВ 2 .

То есть действительно произведение ОВ·OD выражается только через постоянные в данной конструкции величины, а значит, и само это произведение не меняется. Как нетрудно догадаться, радиус окружности, относительно которой делается инверсия, равен квадратному корню из выражения в правой части последней цепочки равенств.

Осталось добавить в рассмотренную систему еще одно звено, которое бы обеспечивало движение точки В по окружности, проходящей через О , и тогда точка D будет двигаться по прямой, как видно из видео, на котором этот механизм показан в движении:

Послесловие

В металлорежущих станках для осуществления прямолинейных движений преимущественно используют следующие механизмы : зубчатое колесо-рейка, червяк-рейка, ходовой винт-гайка, кулачковые механизмы, гидравлические устройства, а также электромагнитные устройства типа соленоидов.

Механизм зубчатое колесо-рейка применяют в приводе главного движения и движения подачи, а также в приводе различных вспомогательных перемещений.

Механизм червяк-рейка . Применяют два типа этих механизмов: с расположением червяка под углом к рейке, что позволяет (для большей плавности хода передачи) увеличить диаметр колеса, ведущего червяк, и с параллельным расположением в одной плоскости осей червяка и рейки, когда рейка служит как бы длинной гайкой с неполным углом охвата винта-червяка. Условия работы этой передачи благоприятнее условий работы передачи зубчатое колесо-рейка.

Механизм ходовой винт-гайка бывает в виде пар скольжения и качения. Применяют его для осуществления прямолинейного движения. Винтовые пары скольжения из-за больших потерь при скольжении в резьбе и связанного с ним изнашивания заменяют винтовыми парами качения. Они имеют малые потери на трение, высокий КПД, кроме того, в них могут быть полностью устранены зазоры в резьбе в результате создания предварительного натяга.

Замена трения скольжения трением качения в винтовой паре возможна либо при использовании вместо гайки роликов, свободно вращающихся на своих осях, либо при применении тел качения (шариков, а иногда роликов). На рис. 2.21 показана шариковая пара, у которой в резьбу между винтом 1 и гайкой 4 помещены шарики 2. Шарики катятся по канавкам ходового винта и гайки. При вращении винта шарики, перекатываясь по канавке, попадают в отверстие гайки и, проходя по желобу 3, через второе отверстие снова возвращаются в винтовую канавку. Таким образом шарики постоянно циркулируют в процессе работы передачи. Как правило, в шариковых парах применяют устройства для выборки зазоров и создания предварительного натяга.

Гидростатическая передача винт-гайка (рис. 2.22) работает в условиях трения со смазочным материалом. Изнашивание винта и гайки при этом практически отсутствует. Передача фактически беззазорная, обеспечивает повышенную точность; КПД передачи равен 0,99. Но по сравнению с передачей винт-гайка трения качения рассматриваемая передача, содержащая винт 7 и гайку 6, имеет меньшую жесткость и несущую способность вследствие масляного слоя. Смазочное масло, нагнетаемое насосом 1, через фильтр 3, дроссели 4 и 5 постоянного давления, поддерживаемого переливным гидроклапаном 2, отверстий α и г, попадает в карманы б и в и сливается через зазоры в резьбе и отверстие д. Разность давлений в карманах б ив обеспечивает восприятие осевой нагрузки слоями масла.

Кулачковые механизмы , преобразующие вращательное движение в прямолинейное поступательное, применяют главным образом на автоматах. Различают кулачковые механизмы с плоскими и цилиндрическими кулачками (рис. 2.23). При вращении кулачка 1 (рис. 2.23, α) через ролик 2, рычажную передачу, зубчатый сектор и рейку движение передается суппорту, который совершает возвратно-поступательное движение в соответствии с профилем кулачка. На рис. 2.23, б показан принцип работы цилиндрических кулачков.

Устройства для малых перемещений. В тех случаях, когда жесткость обычных механизмов типа реечной или винтовой пары не обеспечивает точных перемещений (т. е. когда медленное движение подвижной части станка переходит в скачкообразное с периодическими остановками), применяют специальные устройства, работающие без зазоров и обеспечивающие высокую жесткость привода. К таким устройствам относятся термодинамический, магнитострикционный приводы и привод с упругим звеном.

Термодинамический привод (рис, 2.24, а) представляет собой полый стержень, один конец которого крепят к неподвижной части станка (станине), а другой соединяют с подвижной частью станка. При нагревании стержня спиралью, навитой на него, или при пропускании электрического тока малого напряжения и большой силы непосредственно через него стержень удлиняется на величину ∆l t , перемещая подвижную часть станка. Для возврата подвижной части в начальное положение необходимо стержень охладить.

Магнитострикционный привод (рис. 2.24, б) работает следующим образом. Стержень, изготовленный из магнитострикционного материала, помещают в магнитное поле, напряженность которого можно менять, изменяя тем самым длину стержня на величину ∆t м. Различают положительную (с увеличением напряженности магнитного поля размеры стержня увеличиваются) и отрицательную (с увеличением напряженности магнитного поля размеры стержня уменьшаются) магнитострикции. В качестве магнитострикционного материала применяют железо, никель, кобальт и их сплавы, т. е. материалы, которые изменяют свою длину под действием электрического или магнитного поля, а при снятии поля восстанавливают первоначальные размеры.

Привод с упругим звеном (рис. 2.24, в) позволяет получать малые перемещения за счет упругого звена типа рессоры или плоской пружины. Если рессора предварительно нагружается при подаче жидкости из гидросистемы, то по мере свободного истечения масла из цилиндра через выпускное отверстие малого сечения рессора выпрямляется и свободным концом перемещает шлифовальную бабку.

Рассмотренные приводы применяют в прецизионных станках, где необходимо обеспечить высокую равномерность малых подач и точность малых периодических перемещений .

Рассмотрим передаточные механизмы, с помощью которых можно преобразовать вращательное движение в поступательное или колебательное (и наоборот).

Такие механизмы характеризуются передаточной функцией – это первая производная от функции перемещения 1 ведомого звена по углу поворота или линейному перемещению ведущего звена.

Рычажные механизмы . Примером рычажного механизма является шарнирно-рычажный механизм (см. рис. 1.2).

На рис. 1.11 приведена кинематическая схема кривошипно-ползунного механизма, в состав которого входит кривошип 1, шатун 2 и ползун 3.

Этот механизм служит для преобразования вращательного движения кривошипа 1 в возвратно-поступательное движение ползуна 3 (и наоборот).

Рис. 1.11. Кривошипно-ползунный механизм

Передаточной функцией является зависимость скорости перемещения ползуна от угловой скорости кривошипа: v 3 =f( 1) (и наоборот).

Передача винт-гайка . На рис. 1.12 приведена передача винт-гайка, которая предназначена для преобразования вращательного движения одного звена в поступательное движение другого.

Передаточной функцией является зависимость скорости осевого перемещения гайки от угловой скорости винта: v 2 =f( 1).

Рис. 1.12. Передача винт-гайка: 1 – винт, 2 – гайка

Кулачковый механизм . На рис. 1.13 приведен кулачковый механизм (в состав которого входят кулачок 1 и толкатель 2) и его кинематическая схема.

Рис. 1.13. Кулачковый механизм: 1 – кулачок, 2 – толкатель

Передаточной функцией является зависимость скорости осевого перемещения толкателя от угловой скорости кулачка: v 2 =f( 1).

В машиностроении широко распространены кулачковые механизмы, преобразующие вращательное движение в возвратно-поступательное или возвратно-качательное: например, для выполнения различных операций в системах управления рабочим циклом технологических машин, станков, двигателей и т.д. 1 .

Примеры по темам модуля 1

Пример 1 .

Схема машины дана на рис. 1.1. Частота вращения вала двигателя = 3000 об/мин. Угловая скорость вращения входного вала исполнительного механизма =2с -1 . Подобрать червячную передачу, учитывая, что число витков (заходов) червяка равно одному либо двум. Определитьи .

Решение.

1.Определим угловую скорость вращения вала двигателя (см. формулу (1.4)):

2. Найдем передаточное отношение передачи вращения (см. формулу (1.1)):

.

3. Подберем червячную передачу.

Вариант 1. Если число витков червяка
, то число зубьев червячного колеса из формулы (1.11)

.

Вариант 2. Если число витков червяка =2, то число зубьев червячного колеса

Пример 2.

Зубчатая передача должна уменьшить частоту вращения вала 4 (см. рис. 1.4) в 3 раза. Определить число зубьев колеса , если число зубьев шестерни = 25.

Решение.

Число зубьев колеса из формулы (1.6)

.

Пример 3.

Рис. 1.14. К примеру 3

Определить передаточное отношение механизма, приве­денного на рис. 1.14, при заданных числах зубьев колес: =22, =77, =25, =50. Найти угловую скорость и частоту вращения ведущего вала 1, если вал 3 вращается с частотой =300 об/мин.

Решение.

1.Определим передаточное отношение зубчатой передачи, установленной на валах 1 и 2

2. Определим передаточное отношение зубчатой передачи, установленной на валах 2 и 3

3. Передаточное отношение механизма

4. Найдем частоту вращения вала 1:

5. Рассчитаем угловую скорость вращения вала 1:

Ответ: передаточное отношение механизма равно 7, частота вращения вала 1 составляет 2100 об/мин, угловая скорость вращения – 219,8 с -1 .

Понравилась статья? Поделиться с друзьями: